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ABSTRACT

The objective of this work was the development of a modeling approach that uses Artificial Neural

Networks (ANN) in the estimation of a trip potential index for strategic planning. In the application

described in this paper for introducing the proposed approach, a mean separation accessibility index has

been at first estimated for all households and subsequently linked to mobility variables taken from an O-D

survey. The output variables, i.e. trip characteristics (number and length), were also taken from the same O-

D survey or calculated in a Geographic Information System-environment. The input variables identified

here as relevant to the model were: size and income of the household, which may be associated to mobility,

and the accessibility indicator itself. As the practical use of the ANN model first created was somehow

limited due to the need of the software used for training the network, the trained network was thereafter

replicated in an electronic spreadsheet. That makes it a tool able to conduct, with speed and flexibility,

several different analyses. The application presented here makes clear that the way the results are then

visualized helps even in understanding the logic behind the model. For strategic planning, the methodology

presented in this work seems to be a step forward in relation to traditional accessibility models and it may

be a useful tool for urban and transportation planners and decision-makers. In addition, the case studied

here stressed the fact that urban citizens in developing countries need not only physical accessibility, but

also better mobility conditions.
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INTRODUCTION

Several Brazilian cities have undergone a very fast growth process in the last decades. The intense

population migration towards the cities has been produced basically by the perspective of economic

development. As a consequence, the automobile use is rapidly and continuously growing. That brings some

serious impacts on public transportation systems, which have to survive in a scenario of a continuously

decreasing demand combined with growing costs. In addition, these impacts are not evenly distributed to

all population groups. The low income groups are affected with much more intensity for two reasons: they

are usually captive users of public transportation, and they expend a large share of their budget with

transportation. This situation has undesirable costs from a social point of view and it is highly inefficient

from an economic perspective. Even considering that the continuity of this conjuncture will not bring much

improvement in the quality of life of the entire urban population, the planning strategies used nowadays

somehow help to keep the situation unchanged.

In developing countries there is often a gap and, even worse than that, sometimes a conflict

between the transportation planning objectives and the real needs of the population. In most cases, equity

issues should be more effectively incorporated in the planning process, as a way to reduce the impacts of

the transportation changes on the low income segments of the society. A first step to tackle this problem is

to rethink the planning process itself.

Therefore, bearing in mind that new models or new approaches to the old models are required, the

objective of this paper is to explore a model for strategic planning that joins in a single trip potential index,

on one side, accessibility elements and, on the other side, factors that govern mobility. The proposed

approach uses Artificial Neural Networks (ANNs) to generate the index in four steps: i) the estimation of

spatial attributes of the trips described in a Origin-Destination survey, ii) the conception of preliminary

models for the evaluation of the input-output variables; iii) the evaluation of the relevance of each input

variable in the model predictions; and iv) the formulation of new models only with the variables with the

best performance. These steps are described in that same order in the paper, following a brief review of the

literature concerning the use of Artificial Neural Networks in transportation planning.

Considering that models built in a ANN environment can be somehow unclear for practitioners,

especially if they have to use in their applications the same programs used for training the networks, we
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transferred the trained network to an electronic spreadsheet format. With the models in dynamic

environments, either as electronic spreadsheets or as formulas embedded in GIS (Geographic Information

System) databases, their application for strategic planing becomes straightforward. We demonstrated it in

this study by applying the model to estimate trips for the entire city studied and by simulating the impact

that different values of the input variables had on the output of the model. The conclusions are in the last

section of the paper, prior to the list of references.

ARTIFICIAL NEURAL NETWORKS IN TRANSPORTATION PLANNING

Artificial Neural Networks are systems made of simple processing units (nodes) arranged in layers that

have parallel connections to which weights are associated. Those characteristics make them able to estimate

certain mathematical functions. Moreover, according to (1), a MLP (Multilayer Perceptron) neural network

with two hidden layers is able to approximate any function. As a consequence, depending on the problem

considered, the ANN might even have a better performance than traditional statistical techniques (2).

One of the first applications of ANNs in transportation planning was the work of (3), in 1989,

which was meant to solve traffic engineering problems. According to (4), the technique has been largely

used in transportation engineering in the 1990s for several subject areas such as: driver behavior, parameter

estimation, pavement maintenance, vehicle detection classification, traffic pattern analysis, freight

operations, traffic forecasting, transport policy and economics, air and maritime transport, submarine

vehicles, metro operations and traffic control. The conclusion of (4) was that ANNs show a great promise

as a useful tool for analyzing non-linear problems, which are common in the transportation field.

Applications of ANN in transportation planning and research are now widespread in developed

countries as shown, for example, in (5). In one of the most recent applications of the technique in

transportation planning, the authors compared multiple regression models and ANN for modeling mobility

in a Spanish urban area. Both techniques presented similar results, but the ANN models worked with less

variables than the multiple regression model.

The ability to work with incomplete data makes the ANNs specially attractive for planning in

developing countries, in which some studies are already under way. That was the case, for example, of (6)

and (7), in India. In Brazil, (8) used ANN as an alternative to a Logit model, (9) used it to evaluate and to
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classify transportation projects, and (10) studied the possibility of drawing from the networks the behavior

of users when selecting a transportation mode. Another application was described in (11), in which ANN

and multiple regression models have been used to identify the impact of transportation accessibility on

urban land values. The good performance of the ANNs in all those works suggested that it could also be an

alternative to improve some strategic planning methods, particularly the accessibility indicators. One of the

problems with traditional accessibility measures is that they usually do not include mobility characteristics

of the users, as observed in (12). The importance of investigating transportation accessibility and mobility

is stressed in recent works, such as in (13), (14) and (15). While most authors, such as (12), still use a

multiple regression approach to model mobility elements and accessibility measures, (13) and (15)

suggested to improve the previous approach with ANNs, as further developed in this paper.

STUDY DATA

The main source of data for this study was an Origin-Destination survey carried out in the Brazilian city of

Bauru, which had over 300,000 inhabitants. The city has been divided in 98 traffic analysis zones (TAZs)

for the survey. Interviews were conducted in a sample of 4,000 households, that is about 4.5% of the total

number of households in the city (16). The survey recorded data of 23,314 trips using four transportation

modes: car/motorcycle (as driver), car/motorcycle (as passenger), bus, and walk/bicycle. Around 8,000

trips were considered in this study, because of problems in finding the addresses of either origins or

destinations. The information about the trips was grouped in two different ways for the analyses conducted

here: the total number of trips per household and the total distance traveled per household. These two

groups of output data generated eight sets of data when combined with each of the four transportation

modes. Total trips (regardless of transportation mode) were used to form two additional sets of data,

summing up ten groups of data for the study.

The survey included questions about income and education level, age, occupation, driver’s license

possession, and gender of the residents. For the purpose of this study, in which the analyses were conducted

at the household level, the education variables were the proportion of household members in three levels.

The same number of classes was used to classify the respondents by age. A similar approach was used for

the driver’s license variable, which was taken as the proportion of household members legally allowed to
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drive. None of the survey questions concerned accessibility, but the knowledge of the exact locations of the

households made possible to associate them to accessibility values estimated for the entire city in a GIS-

environment.

Spatial Data and Accessibility Measurement

Databases containing the location of TAZs, street centerlines (along with their names), and blocks (along

with their numbers) of the city have been built in a Geographic Information System for transportation. GIS

tools have been used to find the origin and destination addresses and to calculate the travel distances for all

origin-destination pairs. As the automatic address matching process was able to locate 80% of the 4,000

household locations, a manual revision was necessary to locate the other points summing up 99% of

households located. The database with street centerlines was used to build a network, that was essential to

calculate the accessibility measure. The measure used was the Mean Separation Index (18), which is a

measure of the effort of overcoming the spatial separation between zones (Equation 1). When travel

distance is used, MSI is nothing but the average travel distance to all possible destinations.

∑
≠
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=
n
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j
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n

A
11

1                                           (1)

where Ai is the normalized accessibility of points i; Tij is the perceived cost (e.g., travel time) to the traveler

between points i and j; and n is the total number of points used in the application.

Smaller values indicate smaller average distances and therefore better accessibility. As a

consequence, the households located in the central region of the city have the best accessibility and those

located at the periphery, which is usually the region where low-income groups live in Brazilian cities, have

the worst accessibility. Following, the accessibility values of the households were joined with the other

input and output variables in a same database in order to build exploratory models for an evaluation of the

variables.
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FORMULATION OF THE ANN MODELS

After the selection of the mobility-related variables from the O-D data and the calculation of travel

distances and accessibility values for each household, preliminary ANN models were built. Two output

variables have been tested: the total number of trips per household and the total trip length per household.

The input data used in the models were all at the household level: number of residents, income level,

proportion of residents in each of the three education levels considered, proportion of residents in each of

the three age groups considered, proportion of residents with driver’s license, and accessibility values at the

trip origins.

The EasyNN package, that is a commercial software produced by Stephen Wolstenholme, in

England, was used in this study to perform neural network calculations. The neural network model in this

case is a multi-layered perceptron (MLP) with up to three hidden layers that uses a backpropagation

learning algorithm for establishing the appropriate network weights. For the construction of the ANN

models, three sets of data were randomly selected for training (50% of the cases), validation (25% of the

cases) and testing (25% of the cases). This division was carried out three times for each of the ten original

sets of data, always randomly, generating thirty different sets of data. Several networks were built for

different combinations of learning rates, momentum and number of neurons in the hidden layer. After a

network is trained, its performance can be measured by the comparison of the predicted values and the

actual observations. There are several different measures used for that purpose, including relative

estimation errors, that may be calculated as follows:

100
OBS

ESTOBSRE ×−=
(2)

where RE are the relative estimation errors, OBS are the actual observations, and EST are the values

estimated by the model. This definition expresses the error as a percentage of the true or observed value.

In general, the performance of the networks using the total trip length per household as the output

variable was inferior than that of the networks using the total number of trips per household as the output

variable. Consequently, only the results of the 15 trained networks having the total number of trips per

household as the output variable were presented here. Table 1 shows these results, as well as the number of

nodes in the single hidden layer, the target errors, the mean relative errors, and the R2 values for each case.
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Afterwards, using the approach suggested by (18) the relevance of the input variables was

evaluated for each set of data. The method, that has been successfully used in the works of (19) and (20),

assumes that ijW  (i = 1,...,k; j = 1,...,p) are the weights in the connections of the neurons i of the input layer

and j of the hidden layer. Similarly, it assumes that rsW  (r = 1,...,p) are the weights in the connections of

the neurons r of the hidden layer and s of the output layer. Therefore, the weights rsW , no matter if they are

positive or negative, may be added to the weights *
ijW  using the following expression:

{ }( )rsjijij WSWW /* = (3)

where

∑
=

=
k

i
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1
. (4)

Next, the adjusted weights *
ijW  for the input nodes are added to each of the hidden layer nodes,

and ∑
=

p

j
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1

*  is obtained. Finally, the relevance iRv  of each input variable can be estimated by equation (5).

The results, given as percentages for each of the eleven variables considered in the preliminary models are

shown in Table 2 for all 15 sets of data presented in Table 1.

∑ ∑

∑

= =

==
k

i

p

j
ij

*
ij

i
w

w
Rv

1 1

*

p

1j (5)

The R2 values and the relative errors presented in Table 1 reflect the relatively poor performance

of the preliminary models, except for the group with the models considering trips of the transportation

modes altogether. In that case, a visual analysis of a chart in which predicted values were plotted against

actual values showed that there were no points extremely away from the 45 degrees reference line (Figure

1). Consequently, the model with the best performance was tested again after the exclusion of the input

variables with low relevance (Table 2). Tests with different combinations of input variables suggested that

a model with less input variables would not compromise the performance of the model. Therefore, although
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some of the input variables related to mobility initially appeared to be more relevant than the accessibility

indicator, the final model configuration had only the following inputs: income, household size (number of

people per household), and accessibility. After conducting again all steps already described in this section,

the performance of the new models with the three sets of data were evaluated, as shown in Table 3. The

relevance of the input variables in the new models are shown in Table 4. The values of Table 4 show that,

on average, the two mobility-governing variables were both more relevant than the accessibility variable.

It is interesting to notice that although the performance of the models was not improved by the

reduction in the number of input variables from 11 to 3, the new conditions have not worsened the results

as well. The R2 values and the relative errors were quite similar in all cases. In other words, the models

with 3 input variables are preferred to the models with 11 input variables, especially because the 3 variables

considered are easy to obtain. Income and number of people per household, that clearly influence the

mobility of people, are collected in the official Census surveys regularly conducted in all Brazilian cities. In

addition, the accessibility measure does not require anything but the graphical representation of the street

centerlines. Models with the three input variables shown here could be calibrated (or trained, in the ANN

terminology) with the occasional O-D data and used to generate a trip potential indicator for strategic

planning, as shown in the next sections.

EXPLORING THE BEST MODEL

Accordingly to what has been hitherto discussed, the model selected for further development and

application had three input variables (income, household size, and accessibility) and one output variable

(total number of trips per household). Having decided that, the next step was to reproduce the trained

network in an electronic spreadsheet. The process started with the identification of the activation function

adopted in the original NN simulator. In the case of the simulator EasyNN, the activation function is the

logistic function that can be described by equations (6) and (7), which are applied in the connections

between the input layer (in that case, normalized input data) and the hidden layer. Similar equations are

applied to the connections between the hidden layer and the output layer in order to find the output values

produced by the network.
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Where:

aij = weight associated to the connection from input node i to the hidden node j

xi = value of the input node i

a0j = Bias of the node j in the hidden layer

I = number of input nodes

After the network is trained, the values of weight and bias, respectively associated to each

connection and node and required by equations (6) and (7), are provided by the NN simulator, making it

simple to replicate the model in an electronic spreadsheet. In the present study, after the trained network

was replicated in an electronic spreadsheet, two activities were carried out: the estimation of the trip

potential index for the entire city studied, and a general analysis of the impact of each one of the input

variables on the output values.

The estimation of the trip potential index for the entire city

The simplified ANN model calibrated in the previous section was then used with data aggregated at the

zonal level in order to get the trip potential estimates for the entire urban area. As the available Census data

from 1991 were older than the O-D data used in the calibration of the models we decided to use the latter

also in the example. As we assumed that the performance of the model has already been tested and

accepted based on the relative errors and R2 values, the difference then was that the input variables were

considered as average values per zone, exactly in the same format that they would be found in a Census

report. The distribution of the input values throughout the urban area of Bauru can be seen in the thematic

maps presented in Figure 2.

From Figure 2(a), for example, it is easy to see that the smaller households are mainly clustered

around the city center. In addition, Figure 2(b) shows that the higher average income values are
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concentrated in the southeastern region of the city. The accessibility distribution in the zones is not

presented here, because the pattern is quite simple to grasp. Due to the nature of the indicator applied,

households located in the central region of the city have the best accessibility and the accessibility level

decreases in concentric rings moving outwards.

The output obtained when the model was fed with input variables aggregated at the zonal level is

an overview of the potential number of trips that would likely be generated all over the city. That makes it a

powerful and promising tool for strategic planning. Although the results of the model have already been

tested in the previous section, it was now interesting to see how the predictions at the zonal level were.

From Figure 3, where the average numbers of actual household trips per zone are depicted, no clear spatial

pattern can be easily drawn. Central TAZs generated in many cases the same number of trips as did

peripheral TAZs. The comparison of parts of Figures 2(b) and 3(a), however, may suggest that the income

level really had some influence on the number of trips, as one could anticipate. The southeastern zones,

which had the highest average income values had also some of the larger figures of actual average trips,

even considering that the accessibility level was not so high in that part of the urban area. This was likely

due to the high automobile availability in those households. This may be a clear example of how the

accessibility values alone are not good enough to explain actual trip patterns. This example stressed the

importance of having models that combine accessibility and mobility factors for the prediction of travel

patterns.

The results of the proposed model are shown in Figure 3(b). At first, a visual comparison of the

actual trip patterns and the trip potential values shows that they were reasonably similar. To examine it in

more detail, the results of a numerical comparison were analyzed and they were also acceptable. Several

estimates had a variation of below 20% when compared with the actual trip values. In addition, the

variation of the predicted values was below 40% in most zones. Only one zone had an extremely large

variation, which may be explained by the fact that the zone was almost uninhabited.

Analyzing the input variables of the model

With the trained network replicated in an electronic spreadsheet, it was easy to perform several simulations

with the model in order to see how the output values would be affected by changes in the input values.
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Results of this kind of analysis are summarized in Figure 4. When analyzing one input variable, the values

of the other two were assumed to be constant and close to the average: R$7,000 as the income per

household, 5 persons as the household size, and 7.89 km as the average accessibility.

A detailed analysis of the graphs suggest some aspects that have to be stressed here. In Figure 4(a),

for example, a first look suggests that the number of trips increased with the income values. This only

happens above a certain value, however, what might indicate that the model should be used with a certain

reserve for higher income values. Or it might be an indication that the data used for training the network

was not reliable. Particularly in the case of high income values, some respondents may have forgotten

certain trips or intentionally distorted income-related information. In the case of Figure 4(b), the observed

trend is perfectly aligned with what should be expected: the bigger the household size, the larger the

number of trips per household. It is important to stress, however, the fact that the trendline is irregular,

what was a likely benefit of the Neural Network modeling approach. In Figure 4(c), the tendency is

coherent and regular: higher accessibility values are associated with lower number of trips. It is important

to remember that the accessibility values here are nothing but the average distance from any node to all

other node in the street network. Therefore, higher values mean longer distances and they are supposed to

have a negative effect on the trips.

CONCLUSIONS

The study conducted here showed that Artificial Neural Networks were a good alternative to build the

intended models. The best preliminary models using the total number of trips per household as the output

variable were tested again after the exclusion of the input variables with low relevance. The remaining

input variables were: income, household size, and accessibility. The reduction in the number of input

variables did not worsened the performance of the models, what makes them more interesting than the

more complex, preliminary models.

Although the results obtained in the case study were good enough for strategic planning purposes,

changes in the model formulation could further improve its estimations. The accessibility measure used as

an input variable, for example, was based only on physical attributes of the network. A gravity-type index

would probably give a better picture of the actual accessibility in the urban area. In that case, differences in
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the attractiveness of the zones would be taken into account. Unfortunately, there were no data available to

consider this kind of measure in the present study. Other conditions could be tested in order to improve the

performance of the models, for example, filtering the input data to analyze subsets of trips by purpose.

Even though, the simplified ANN model seems to be quite useful for strategic planning considering that the

input variables left are easy to get, for instance, from Census data.

It is important to emphasize the role that GIS has played in this study. Without it, the acquisition

of the spatial attributes of the O-D survey and the estimation of the accessibility values would be very

difficult and time-consuming. In addition, its mapping capabilities made easy to understand and to compare

the results of the model application with the actual trip values.

The ANN software used is user-friendly and it is an affordable option even for developing

countries standards. Other positive outcome of the ANN approach is the possibility of getting to know the

relevance of the input variables while building the models. This made very easy to redesign them by the

exclusion of less relevant input variables. In the case studied here, the selection of the most relevant

variables stressed the assumption that accessibility and mobility should be examined together in

transportation planning analyses. In general, the approach developed here seems to be a step forward in

relation to traditional accessibility models and it may be a useful tool for urban and transportation planners

and decision-makers. The approach makes clear that urban citizens (particularly those in developing

countries) need not only physical accessibility, but also better mobility conditions.

Based on the results presented and analyzed in this study, the use of electronic spreadsheets to

replicate the trained network seems to be a simple and efficient way to bring the ANN modelling

capabilities closer to practitioners and decision makers. The sort of sensitivity analises conducted even

might even help to understand the logic behind the model or to detect inconsistencies, as that observed here

in the case of the input variable income, for example.
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FIGURE 1  A comparison between actual and estimated trips
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FIGURE 2  Average household size (number of persons per household) and income (R$) per TAZ
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FIGURE 3  Average number of actual (a) and potential (b) trips per household in each TAZ
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FIGURE 4  Influence of the input variables on the number of trips per household: (a) income, (b)

household size, and (c) accessibility level
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TABLE 1  Results of the Preliminary Models Having the Total Number of Trips per Household as the

Output Variable

Transportation modes Case Nodes in the
hidden layer

Target error Mean
relative
errors

Mean relative
error per mode

R2 (%)

1 6 0.03 23.77 68.30
2 6 0.03 20.36 22.01 65.64

All

3 6 0.03 21.90 64.99
1 9 0.03 34.35 39.28
2 9 0.03 37.05 35.70 29.94

Car – Driver

3 9 0.03 35.71 28.46
1 7 0.03 28.59 25.77
2 7 0.03 32.42 32.39 16.57

Car – Passenger

3 7 0.03 36.17 12.51
1 6 0.03 20.18 56.03
2 6 0.03 18.57 20.89 52.85

Bus

3 6 0.03 23.93 60.21
1 4 0.03 30.68 30.08
2 4 0.03 29.10 27.95 35.90

Non-motorized

3 4 0.03 24.07 44.15
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TABLE 2  Relevance of the Input Variables in the Preliminary Models Having the Total Number of

Trips per Household as the Output Variable

Transportation Cases Income Household Education level Age Driver’s Accessibility

Modes Size A* B** C*** 13 or
younger

14-60 60 or
older

License

1 3.39 38.97 2.33 5.82 6.02 10.85 10.30 11.58 1.54 9.17
2 8.79 39.97 3.89 16.81 5.12 13.51 2.08 2.39 4.23 3.20

All

3 4.82 35.57 6.24 8.62 7.32 17.79 4.83 4.58 3.62 6.61
1 11.89 12.04 11.28 7.94 6.53 13.86 5.89 9.23 11.84 9.49
2 21.06 19.16 3.43 10.69 6.39 7.01 5.05 9.90 7.18 10.13

Car – Driver

3 14.27 16.05 8.39 11.02 13.27 12.24 3.17 3.17 9.51 8.91
1 12.75 45.12 6.96 2.70 4.81 5.29 3.12 1.67 9.00 8.58
2 7.59 31.45 4.81 5.00 10.81 7.37 6.57 7.16 7.40 11.83

Car –
Passenger

3 9.33 13.84 6.39 4.28 10.85 7.18 11.18 14.15 10.04 12.76
1 7.69 24.68 14.73 5.37 13.00 8.92 10.26 4.32 2.97 8.07
2 7.91 18.61 16.60 6.94 12.55 11.93 9.95 5.58 4.73 5.20

Bus

3 12.92 32.29 5.11 6.31 11.49 8.30 6.56 5.78 7.65 3.59
1 9.52 38.09 4.07 5.79 5.74 13.33 5.27 4.40 7.99 5.79
2 6.89 36.92 8.45 7.46 15.42 5.49 5.05 2.74 7.98 3.60

Non-
motorized

3 11.59 63.49 1.88 0.75 1.97 3.00 3.38 5.01 3.64 5.29
Average 10.03 31.08 6.97 7.03 8.75 9.74 6.18 6.11 6.62 7.48

* Up to 8 years of school
** Finished High school or attending University
*** Finished University
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TABLE 3  Results of the Simplified Models Having the Total Number of Trips per Household as the

Output Variable

Transportation modes Cases Nodes in the
hidden layer

Target error Mean
relative
errors

Mean relative
error per mode

R2 (%)

1 4 0.03 22.70 69.32
2 4 0.03 20.39 21.65 65.42

All

3 4 0.03 21.87 65.25
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TABLE 4  Relevance of the Simplified Models Having the Total Number of Trips per Household as the

Output Variable

Transportation modes Case Income level Household size Accessibility
1 29.17 64.38 6.46
2 14.40 68.66 16.94

All

3 17.63 70.52 11.85
Average 20.40 67.85 11.75
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