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Abstract: The main goal of this paper is to discuss a method for the definition of 
spatial dependence indicators and their inclusion as variables into transportation 
demand models. The method is based on ESDA (Exploratory Spatial Data Analyses) 
and CSDA (Confirmatory Spatial Data Analyses) tools, which have been used in two 
ways, both in a GIS (Geographic Information Systems) environment: i) to produce 
indicators of spatial dependence; ii) to evaluate the models estimations. The 
proposed method is applied in a case study in the city of Porto Alegre, State of Rio 
Grande do Sul, Brazil, based on origin-destination data obtained through household 
surveys. The results of this work show that ESDA and CSDA tools are very important 
for the definition of spatial dependency indicators, identification and selection of the 
most significant spatial variables, specification and evaluation of demand forecast 
models and evaluation of the results. 

Keywords: transportation demand, spatial autocorrelation, GIS, ESDA, CSDA. 

 

1. INTRODUCTION 

Regression models are commonly used in the trip generation phase of transport 
planning, but they can result in some problems if the variables are spatially 
autocorrelated. Therefore, in this study the effects of spatial dependence on transport 
demand models are analyzed. That constitutes, without question, one of the main 
spatial analysis applications in transport planning.  

There are various methods that take into account the spatial effects of regression 
models, but the identification of the best method is strongly influenced by the spatial 
characteristics of the phenomenon analyzed and by the nature of the independent 
variables considered. Therefore, the modeling process should start with the analysis 
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of the intensity of spatial relationships among variables. If these relationships are 
statistically significant, they have to be incorporated into the models. Considering the 
importance of spatial analysis, the main objective of this study is to discuss a method 
for the definition of spatial dependence indicators and their inclusion as variables in 
transport demand models. 

The method is based on exploratory and confirmatory spatial data analysis tools, 
ESDA (Exploratory Spatial Data Analyses) and CSDA (Confirmatory Spatial Data 
Analyses). They are used in two ways, both in a GIS environment: i) to produce 
indicators of spatial dependence; ii) to evaluate the model estimates. The method 
proposed is applied to a case study in the city of Porto Alegre, in the state of Rio 
Grande do Sul, Brazil, using household origin-destination data. The dependent 
variable studied was the number of Home-Based Produced Trips (HBPT) per Traffic 
Analysis Zone (TAZ). 

It should be noted that previous studies conducted by the authors have shown a 
significant improvement in transportation demand forecasting models with the 
introduction of two types of spatial variables, Global and Local Indicators of spatial 
dependence (Lopes and Silva, 2004; Lopes, 2005; Lopes and Silva, 2005; Lopes et 
al., 2005, and Lopes et al., 2006).  

 

2. ESDA & CSDA TOOLS 

One of the objectives of spatial statistics is to characterize spatial patterns in the 
data, when the data is spatially dependent. That excludes the utilization of many 
traditional statistical models that require independence between observed events as 
a basic attribute. Models that do not consider spatial patterns, such as the multiple 
regression models, are denominated in this study as traditional models. According 
to Anselin (1992), the spatial patterns can cause problems such as spatial 
dependence and heterogeneity, which affect the validity of traditional statistical 
methods. These problems can be identified and quantified by spatial statistics 
through the use of exploratory and confirmatory analysis tools, ESDA and CSDA, 
respectively. 

2.1 ESDA Tools 

The Exploratory Spatial Data Analysis tools (ESDA) have as their objective to 
visualize and describe spatial distributions, identify standards of spatial association 
(spatial agglomerations or clusters), identify atypical observations (extreme values or 
outliers) or the existence of spatial instabilities (non-stationarity). Wise et al. (1998) 
point out that the methods in this group are descriptive and not confirmatory, with the 
intent to detect patterns, elaborate hypotheses and estimate spatial models. 

One of the functions used to estimate how much an observed attribute value in one 
region is dependent on the values of the same variable in neighborhood locations is 
spatial autocorrelation. The Moran’s I Index indicates, through values that vary from -
1 to +1, how similar each area is to its immediate neighbor. The closer to zero, the 
less the spatial autocorrelation. Values close to -1 or +1 indicate the presence of 
negative or positive autocorrelation. As such, Moran’s I is very useful for the analysis 
of the initial stage of transport modeling, allowing the identification of characteristics 
of the dependent variable and possible independent variables. 
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The Moran Scatterplot, utilized to obtain the global spatial variables (or global 
indicators of spatial dependence), is constructed using normalized values of the 
analysis variable (Z), which are compared with the average of the neighborhood 
values (Wz) in a two dimensional graph divided into 4 quadrants. Moran’s I is 
equivalent to the coefficient that indicates the linear inclination of regression (α) of Wz 
in Z, such that the quadrants can be interpreted as: 

• Q1 (positive values and averages) and Q2 (negative values and 
averages): indicate points of positive spatial association, signifying 
that a local has neighbors with similar values; 

• Q3 (negative values and positive averages) and Q4 (positive values 
and negative averages): indicate points of negative spatial 
association, signifying that a local has neighbors with distinct values. 

Moran’s Scatterplot can also be presented in a two-dimensional map, the Box Map, 
in that each polygon is presented indicating its quadrant in the scatter diagram. While 
the global indicators, like Moran’s I, provide a unique value as a measure of spatial 
association for the grouping of data, the local indicators produce a specific value for 
each area, allowing the identification of regions with similar attribute values (clusters), 
with outliers, and with more than a spatial regime. Anselin (1996) refers to the local 
indicators as LISA (Local Indicators of Spatial Association) statistics. 

The statistic significance of the use of Moran’s local indicator is computed in a form 
similar to the case of the global index. After calculating the index for each area, the 
values of other areas are randomly permuted until a pseudo distribution is obtained, 
for which significant parameters can be calculated. In this case, the maps (LISA Map 
and Moran Map) indicate the regions that present local correlation significantly 
different from the rest of the data, because they are areas with their own spatial 
dynamics, i.e., pockets of local non-stationarity, and require detailed analysis. 
Significant autocorrelations to a level of 5 % indicate very similar areas in relation to 
their neighbors. 

It is through Local Moran LISA statistics that the spatial variables, which are obtained 
as local indicators of spatial dependence and denominated local spatial variables, 
are introduced into transport demand models in the present study. The visualization 
indices and tools of ESDA are also very useful in the diagnosis of the models 
performance, since they can be used in the analysis of the spatial distribution of 
residues. 

2.2 CSDA Tools 

Confirmatory Spatial Data Analysis (CSDA) tools group the quantitative processes of 
modeling, estimation and validation necessary for the analysis of spatial components. 
It can be highlight, in this group, the “toolkit” available for spatial statistics and 
spatial econometrics, as spatial regression, or the introduction of indicators of 
spatial autocorrelation as spatial variables in regression models. 

Typically, when performing regression analysis, the aim is to find a good fit between 
predicted and observed values of the dependent variable in the model. In addition, it 
is important to find which of the variables significantly contribute to the linear 
relationship. The standard hypothesis is that the observations are not correlated and, 
as such, the residuals εi of the model, which follow a Normal Distribution with a zero 
average and constant variance, are independent and uncorrelated to the dependent 
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variable. However, in the case of data that are spatially dependent, it is very unlikely 
that the standard hypothesis of uncorrelated observations is true. In the most 
common case, the residues continue to display spatial autocorrelation in the data that 
can be manifested in systematic regional differences, or even through a continuous 
spatial trend. 

Regression analysis of spatial data incorporates, in the modeling, the spatial 
dependence between data, improving the predictive power of the model. Initially, an 
exploratory analysis is conducted with the aim of identifying the structure of 
dependence in the data. That is very important for the definition on how to 
incorporate this dependence into the regression model. There exist two basic types 
of modeling, named spatial regression, that allow the incorporation of the spatial 
effect: those of Global form and those of Local form (Anselin, 2002, and 
Fotheringham et al., 2000). 

The Global models capture the spatial structure through a unique parameter that is 
added to the traditional regression model. The simplest spatial regression 
models, formally presented by Anselin (2002), are the Spatial Auto Regressive (SAR) 
or Spatial Lag Model and the Conditional Auto Regressive (CAR) or Spatial Error 
Model. 

Another way to consider the spatial dependence in the regression models, which is 
called in the present study as the alternative transport model, consists in the 
introduction of indicators of spatial autocorrelation (Global and Local) as variables. 
They are added to the traditional variables in the multiple regression model, or 
traditional model (Lopes and Silva, 2004; Lopes, 2005; Lopes and Silva, 2005; 
Lopes et al., 2005 and Lopes et al., 2006). In this way, the global and local spatial 
variables are defined and obtained through spatial analysis of the socioeconomic 
variables with the use of ESDA tools through spatial statistics computer packages. 

The global spatial variables are binary (dummy) variables associated to the 
quadrants of the Moran Scatterplot (Global indicator). For an independent variable 
“X” three variables (X_Q1, X_Q2 and X_Q3) are defined to represent the spatial 
regime of each TAZ. For the definition of the local spatial variables (LISA_X) the 
LISA indicators are considered. 

In the existence of spatial dependence influencing the results of the traditional 
models, Lopes et al. (2006) proved that the alternative models were more efficient 
than the Global spatial regression models (SAR and CAR) in the prediction of HBPT 
for the data of Porto Alegre. However, it should be pointed out that, in the same way 
as the traditional models, the alternative models require rigorous analysis of the 
significance of the included variables, in order to avoid the addition of unnecessary 
variables. The previous study also showed that the most significant spatial variables 
were those that showed significant autocorrelation indices, and that the spatial effect 
was more evident in the variables expressed as rates (e. g., population, household 
and vehicle densities). 

2.3 Evaluation of Spatial Models 

The most common method to select regression models is based on the Maximum 
Likelihood values of the models, weighted by the difference in the number of 
estimated parameters. In the models with a dependence structure (spatial or 
temporal) the evaluation of the adjustment is penalized in function of the number of 
parameters. It is still necessary to consider the number of independent parameters to 
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incorporate spatial functions into models. For each new variable in the regression 
model, a new parameter is added. 

Usually, the comparison of models uses the Log Likelihood that represents the best 
adjustment to the observed data. The Akaike Information Criterion (AIC) is expressed
in Equation (1). 

kLIKAIC 22 +×−=  (1) 

where: 
LIK: is the Log likelihood; 

k: is the number of regression coefficients. 

The best model is the one that has the lowest AIC value. Many other information 
criteria are available in GIS with spatial statistics, through CSDA tools. Most of them 
are variations of AIC, with changes in the penalization of parameters or observations. 

 

3. METHOD 

The method of investigation of the spatial dependence effects in transport demand 
forecasting models that is based on Origen-Destination (O-D) surveys was applied 
through a case study in Porto Alegre, in the State of Rio Grande do Sul, Brazil, in two 
distinct periods, 1974 and 2003. 

It is important to note that the analyses presented here should always be preceded 
with stages such as: analysis of available O-D survey data, the definition of the study 
area, preparation of the GIS database, definition of the dependent variable to be 
analyzed (Home-Based Produced Trips, in this study) and selection, in the database, 
of the candidate independent variables. Additionally, following traditional demand 
modeling processes, the traditional explanatory variables that are significant to the 
specification of the best possible model should be selected. It is important to have in 
mind that the variables are selected to be included in the “traditional model”, but it 
constitutes the base of the “alternative models” subsequently evaluated. The 
analyses presented in this article are based on the application of ESDA and CSDA 
tools, occurring in three steps: 

1. Verification of the necessity to introduce spatial dependence 
indicators into demand models: are there spatial autocorrelation 
effects that negatively interfere in the performance of the 
traditional model? (use of ESDA and CSDA tools); 

2. Definition of the spatial dependence indicators highly significant as 
spatial variables, and their introduction in the demand models: 
which variables could be perturbing the model performance? 
Which types (global or local) and which spatial variables could be 
significant for the model? Which candidate variables have the 
largest spatial correlation with the dependent variable? (use of 
ESDA tools, Box Maps for Global Spatial Variables and Moran 
Maps for Local Spatial Variables; use of CSDA tools to specify the 
alternative models; 
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3. Comparative analysis of the traditional and alternative models: 
did the introduction of spatial dependence indicators improve the 
predictive power of the demand model? (use of CSDA tools, 
through statistical tests, and ESDA tools, to analyze the spatial 
distribution of the estimate residuals). 

The GeoDa software (Anselin, 2003 and Anselin, 2004), which is utilized in the 
analysis presented here, contemplates both the ESDA and CSDA tools. In this way, 
as well as obtaining spatial variables, calibration and analysis of the models analyzed 
are also possible through the software. However, even though the GeoDa calculates 
the Moran’s I Global index of spatial dependence, the generation of the quadrants of 
each area of analysis, such as the visualization of the Box Map, is not automatic. 

The adjustment of the models can be evaluated through the analysis of the values of 
diverse statistical tests presented in the manuals provided by the software of each 
adapted model, such as the Adjusted R-squared and AIC, among others. For the 
variables, it was possible to verify the significance (t-Student) and the presence of 
multicollinearity (Multicollinearity condition number). 

To verify the hypothesis of the existence of spatial autocorrelation affecting the model 
results, the program provides, from the outputs of each model specified through the 
CSDA tools, the following statistics: Moran’s I (error), Lagrange Multiplier (lag), 
Robust Lagrange Multiplier (lag), Lagrange Multiplier (error), Robust Lagrange 
Multiplier (error), and Lagrange Multiplier (SARMA). For a better understanding of 
this effect, it was possible to visualize the dispersion of residuals through map 
generation (such as Moran Maps for the model residuals) with ESDA tools. 
 
4. ANALYSIS OF THE RESULTS 
 
The results obtained in the application of the method are presented and discussed in 
this section, following the sequence given in section 3, because the execution of 
each step is related to the results obtained in the previous step. Initially, in subsection 
4.1, the verification of the necessity to include spatial dependence indicators into 
transport demand models is presented. The study follows with an analysis of which 
indicators of spatial dependence are more significant as spatial variables in the 
specification of alternative demand models, which is presented in subsection 4.2. 
Finally, in subsection 4.3, a comparative analysis of the model results is presented. 
 
4.1 The Need of Spatial Variables in the Models 
 
The Traditional model, which is a Multiple Regression model, was initially adapted 
through the use of GeoDa software. Standardized values of the independent 
variables of population (STD_POP) and fleet (STD_CAR), already confirmed as the 
most significant of the traditional explanatory variables for Home Based Produced 
Trips (HBPT) in 1974, were used in the model. Next, an analysis of the adjusted 
model was performed from CSDA model outputs. The Adjusted R-squared value 
obtained was 0.91, indicating that the model provides a good explanation of the 
variance of the dependent variable (HBPT). The t-Student tests realized for the 
model parameters reveal that all are significant to a significance level of 5 %. 
 
The analysis of the model continues with a test to verify the existence of spatial 
dependence. The Moran’s I value of the error (0.429) and its p value (0.000) indicate 



Paper 62 7

the presence of spatial autocorrelation, which can affect the model performance. This 
effect can be confirmed through the visualization of the spatial distribution of the 
residuals, which is presented in the Moran Map of Figure 1. It is possible to verify the 
existence of 7 TAZs in a significant grouping in quadrant 2 (Q2), in other words, low 
residuals (negative), in a region of the map that represents the centre of the city. 
Another significant grouping of 13 TAZs, this time in quadrant 1 (Q1), indicating high 
residuals (positive), appears in the south and southeast of the centre. 
 

 
Figure 1 - Moran Map – Traditional model residuals – 1974 data 

 
The same process was applied to the 2003 database. In that case, in addition to the 
variables population and fleet, the number of households and fleet density (number 
of cars/km2) were also significant to HBPT. The traditional model adapted for 2003 
with the standardized values of these four variables was verified to be suitable. The 
Adjusted R-squared value obtained was very high (0.981) and the t-Student tests 
realized for the model parameters also revealed that they are all significant to a 
significance level of 5 %. In addition to this, the statistical tests rejected the presence 
of spatial autocorrelation, which can be confirmed by the Moran’s I value of the error 
(-0.002), by the p value (0.359), and through the Moran Map not indicating the 
presence of significant groupings of positive and/or negative residuals. 
 
These results indicate that for the 1974 data, it is necessary to specify an alternative 
model in an attempt to correct the problems of spatial dependence presented. For 
the 2003 data, as such a problem was not identified; specification of a new model is 
not justified. 
 
4.2 Definition of Spatial Variables 
 
The definition of spatial variables for the specification of an alternative model, as 
was indicated in the previous step for the 1974 data begins with an exploratory 
analysis of the involved variables. The dependent variable (HBPT) and the candidate 
independent variables were examined to evaluate the presence of spatial 
autocorrelation. This study has the aim of initially discovering which variables could 
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be affecting the model performance. That is a first step in the search for the best 
indicators for the model. 
 
It can be verified in Table 1, for the two periods (1974 and 2003) that the variables 
that have the greatest spatial autocorrelation indices are those that have their values 
determined by area, which can be explained by the fact that, following the adopted 
criteria for division of the TAZs, the effects of the MAUP (Modifiable Areal Unit 
Problem) could hide the effects of existing spatial autocorrelation in the variables. 
Such effect is also more evident in the dependent variable (HBPT) when considered 
by area (D_HBPT). 

Table 1 – Spatial Autocorrelation – Moran’s I for the variables of 1974 and 2003 

Variable Description Moran’s I 
(1974) 

Moran’s I 
(2003) 

POP Total population per TAZ 0.207 0.199 

HH Total number of households per TAZ 0.277 0.139 

CAR Total number of cars per TAZ 0.436 0.234 

D_POP Population density (POP/km2) 0.734 0.572 

D_HH Density of households (HH/km2) 0.781 0.681 

D_CAR Density of cars (CAR/km2) 0.762 0.639 

HBPT Home based produced trips 0.336 0.145 

D_HBPT Density of home based produced trips (HBPT/km2) 0.754 0.664 

From analysis of the data in Table 1, verification of the spatial dependence of the 
variables is more evident for the 1974 data, because Moran’s I values are higher. 
The variable most affected is D_HH, followed by D_CAR and D_POP. It could be 
concluded that the variables are affected by spatial autocorrelation effects. 

Following the analysis that indicated the variables D_POP, D_HH and D_CAR as 
those that have the greatest spatial autocorrelation indices, was verified, through a 
spatial correlation analysis of these variables with the dependent variable, which is 
the most recommended and which and what types of indicators (Global or Local) can 
contribute significantly to the alternative model of 1974. For this, the comparison of 
coincident elements of the Box Maps was done, for the definition of the global spatial 
variables, and Moran Maps, for the local spatial variables (Figures 2 and 3). 
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2a - Box Map – HBPT – 1974 data 2b - Box Map – D_CAR – 1974 data 

 

2c – Coincident TAZ analysis (Box Maps to HBPT and D_CAR) – 1974 data 

Figure 2 – Example of the spatial correlation analysis – identification of the most 
significant Global spatial variables – Box Maps to HBPT e D_CAR – 1974 Data 
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3a - Moran Map – HBPT – 1974 data 3b - Moran Map – D_POP – 1974 data 

 

3c – Coincident TAZ analysis (Moran Maps to HBPT and D_POP) – 1974 data 

Figure 3 – Example of the spatial correlation analysis – identification of the most 
significant Local spatial variables – Moran Maps to HBPT and D_POP – 1974 Data 

Analyzing the maps by counting the coincident TAZs in the Box Maps (as in the 
example in Figure 2), the most spatially correlated variables to HBPT were verified as 
being D_CAR and D_POP, with 56 % of the coincident areas, while D_HH was 42 % 
coincident. Because the Global variables are defined by binary variables for the 
quadrants, it was necessary to analyze which quadrants are most correlated. 
Quadrant 2 (Q2) for the variable D_CAR gave the greatest percentage (28 %), 
followed by quadrant 2 (Q2) for the variable D_POP (27 %), quadrant 1 (Q1) for 
D_CAR (24 %) and quadrant 1 (Q1) for D_POP (23 %).  
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The analysis of the most significant local spatial dependence indicators was through 
a search of coincident zones in the Moran Maps (as in the example presented in 
Figure 3), that gave D_HH and D_POP at 63 % of coincident TAZs, followed by 
D_CAR with 61 %. Considering just the quadrants where local indicators are 
significant, the percentages of coincidence are 17 % for D_POP and D_CAR and 
16 % for D_HH. 

For the 2003 data, the D_POP variable that was most spatially correlated with HBPT 
had just 20 % of coincident TAZs in the Box Map. In the analysis of Moran Maps, no 
significant quadrant area was coincident. It was verified that the spatial correlation 
observed in the 1974 data did not exist in 2003. That was also indicated by the 
analysis of the residuals of the 2003 traditional model and in the analysis of the 
spatial autocorrelation of the variables presented in Table 1. 

For the specification of the alternative models, through the use of CSDA tools 
present in the GeoDa software, the spatial variables (Local and Global) were 
included as per the degree of verified correlation. For each included variable, 
statistical tests provided by the program were used for analyzing the significance of 
the variables (t-Student), as well as the non-existence of multicollinearity, evaluated 
by the Multicollinearity Condition Number, that should be less than 30. The 
alternative models for 1974 are presented in Table 2. 

Table 2: Summary of the alternative model adjusted for the 1974 data – included 
variables (coefficients and significance) and model evaluation (adjustment and 

predictive power) 

Alternative Model 1974 

Included variables and diagnosis Coefficients t-Statistics 

Constant 13208.615 50.142 
STD_POP 4222.638 19.219 Traditional variables 
STD_CAR 2121.465 8.424 
D_CAR_Q2 - 1753.661 -4.568 
STD_LISA_D_POP 1819.500 2.944 Spatial variables 
STD_LISA_D_HH - 2930.957 -4.742 
R2 adjusted 0.953 
AIC 1558.4 

Model evaluation  
(adjustment and 

predictive power) Moran’s I (error) 0.066 (p value = 0.087) 

 

For the alternative model, adapted for 1974, several variables have shown statistical 
significance. That is the case of the two traditional socioeconomic variables 
(STD_POP and STD_CAR), a global spatial variable (D_CAR_Q2) and two local 
spatial variables, which also has their values standardized (STD_LISA_D_HH and 
STD_LISA_D_POP). The three spatial variables had a degree of significance 
compatible with the degree of spatial correlation of the variables D_CAR, D_HH and 
D_POP with the dependent variable (HBPT). 

For the 2003 data, even without having the necessity to specify an alternative 
model, but in order to prove the relationship between spatial correlation with the 
dependent variable and the significance of the spatial variables, the same analysis 
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was performed. Only one global spatial variable has statistical significance 
(D_POP_Q2), which also corresponded to the indicator most spatially correlated with 
HBPT. 
 
4.3 Comparative analysis between Traditional and Alternative models 
 
The following stage involved the analysis of the results provided in the outputs of the 
program for the 1974 alternative model (Table 2) and comparison with the results 
(see section 4.1) previously obtained with the 1974 traditional model. The Adjusted 
R-squared value obtained with the inclusion of the indicators of spatial dependence 
in the model increased to 0.953, indicating that the alternative model better explains 
the variance of the dependent variable (HBPT). A reduction in the AIC statistics from 
1610.58 (obtained with the traditional model) to 1558.40 was also observed, what 
reaffirms the superiority of the alternative model over the traditional model. 
 
The predictive power of the models was compared through the verification of the 
Moran’s I of errors and the analysis of the dispersion of residuals, which can be 
visually conducted through the Moran Maps, as presented in Figures 1 and 4, for the 
residuals of the traditional model and the alternative model, respectively. 

 

Moran Map – Alternative model residuals – 1974 data 
Figure 4 - Moran Map – Alternative model residuals – 1974 data 

As was presented in section 4.1, the traditional model adapted to 1974 data, 
resulted in a Moran’s I index of 0.429 for the residuals and the hypothesis of 
existence of spatial autocorrelation was not rejected by the statistical tests of the 
model generated by GeoDa software. After the inclusion of spatial dependence 
indicators (spatial variables), all of the statistical tests, of the denominated “1974 
alternative model” (Table 2), rejected the hypothesis of the existence of spatial 
autocorrelation for the residuals, as Moran’s I index reduced dramatically to 0.066, 
confirmed by the p value of the test (0.087). 
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This result could be better understood with the use of ESDA spatial visualization 
tools. In the Moran Map of Figure 4, for example, it is possible to see that the 
residuals of the 1974 alternative model does not have so many significant groupings 
of high (Q1) and low (Q2) values as those of the 1974 traditional model, shown in 
Figure 1. 

The same analysis was done for the 2003 models (although the results are not 
presented in this paper). The analysis has shown a small difference in the dispersion 
of residuals in the 2003 alternative model when compared with the residuals of the 
2003 traditional model. This result was already indicated through the analysis of the 
2003 traditional model, described in section 4.1 and confirmed in the analysis of 
spatial correlation for the 2003 data, commented in item 4.2. The analysis of the Box 
Maps confirmed, in addition to the variable D_POP that presented the greatest 
coincidence with the spatial characteristics of HBPT, that the spatial correlation was 
not as high as observed in the 1974 variables. 
 
5. CONCLUSIONS 
 
With the results and analyses presented in this article, the objective of this study, which 
was to determine the contribution of statistical spatial tools to transport demand
modeling, was reached. We initially found that the effects of spatial dependence
present in the correlated variables with the specific phenomenon being studied can 
affect the prediction of this phenomenon if such effects are not considered in the 
modeling. This problem, which was manifested in the 1974 data by the unrandom 
spatial distribution of the residuals, could be detected and visualized through the use 
of CSDA and ESDA tools. Significant spatial autocorrelation indices, such as Moran’s 
I (error), and the verification of the presence of significant groupings of positive 
and/or negative residuals are indications that a new model should be specified in 
order to take such effects into consideration. 
It was also discovered, with the analyses presented in Section 4.2, that the variables 
that serve the base for obtaining the spatial dependence indicators (spatial variables) 
should result in significant indexes of spatial autocorrelation. The phenomenon was 
clearly seen in the variables related to area, such as D_POP, D_HH and D_CAR, 
which was observed for both the 1974 and 2003 data. This relationship reduces the 
possible effects of MAUP, which can hide the existence of spatial autocorrelation in 
the variables with absolute values. 

The analysis of spatial autocorrelation with the dependent variable, also described in 
Section 4.2, was a significant contribution for the definition of the type of spatial 
variables (Global or Local) and for the identification of which indicators of spatial 
autocorrelation are the most significant. We highlight the correlation analysis of the 
Box Maps for the identification of the most significant Global spatial variables (such 
as D_CAR_Q2 for 1974 and D_POP_Q2 for 2003) and the correlation analysis of the 
Moran Maps for the identification of the most significant Local spatial variables (such 
as STD_LISA_D_POP and STD_LISA_D_HH for 1974). If there is no spatial 
correlation, the variable does not have statistical significance in the model. That was 
verified in the analysis of Moran Maps for 2003, although they were not presented in 
this article. 

This study showed, through the analyses presented in Section 4.3, that the 
introduction of spatial variables can improve the predictive power of transport 
demand models (1974 alternative model). This happens, however, only when the 
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spatial autocorrelation effect significantly affects the explicit variables involved (as in 
the 1974 traditional model). In the case of the 2003 alternative model, even though 
the analyses were not presented in this article, it was verified that the introduction of 
spatial variables did not improve the predictive power of the model, it actually 
deteriorated. ESDA and CSDA tools are indispensable for the detection of such 
spatial effects, and through these tools effective confirmation of the best model 
design can be determined. 

Finally, it is important to note that independently of how spatial effects are considered 
or even without the necessity to consider such effects, the use of ESDA and CSDA 
tools constitutes an advance in the analysis of transport models. Their inclusion 
guarantees a more efficient evaluation of the phenomenon when compared with 
traditionally utilized techniques, because traditional regression estimators and model 
evaluation methods do not take into account spatial effects. 
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